DIS Project: Group 5

Simon Honigmann, Leonardo Cencetti, Arthur Gassner

Professor:

Alcherio Martinoli

TAs:

Cyrill Baumann (head TA) Chiara Ercolani Faëzeh Rahbar Anwar Quraishi

Methodology

Hardware characterization

Hardware Characterization: IR Sensor

- 1. 2 baseline measurements (no obstacle)
- 2. 9 distances (white perpendicular obstacle)
- 3. Sensor aperture (by sweeping the obstacle)

Webots lookup tables

Hardware Characterization: IR Communications

E-Puck Center Distance [cm]

- ⇒ **Reliable range** estimation ($\sigma \approx 0.61$ cm @ 20 cm)
- ⇒ 80% packet success rate up to 15 cm

Hardware Characterization: Odometry

e-Puck	Axle Length [ground]	Wheel Diameter
99	5.293 cm	4.102 cm
77	5.345 cm	4.101 cm
56	5.279 cm	4.103 cm
STD	0.086 cm	0 cm

- Physical dimensions of each robot measured
- Validation through rotation and forward-motion tests:
 - Forward tests over 600 mm
 - → **4 mm** error (**0.8%**)
 - Rotations test over 20 consecutive 180° rotations
 - → **71.3°** Avg. Error (**1.98%**)

Modeled as Gaussian noise on both motor speed and axle length

Simulated Hardware

Dropping communication quality

Odometry noise

Obstacle avoidance implementation:

Single Robot P-Best PSO^[2] on obstacle avoidance

- Fitness $= |V|(1 \sqrt{\Delta V})(1 IR_{max})^{[1]}$
- Hyper-parameters:
 - Nparticles = Data Size (22, 12)
 - Standard Neighborhood
 - # Neighbors = 2
 - 5 Runs x 100 Iterations x 30s (simulated time)
- Random initial robot location on diverse, cluttered map

Single Robot PSO on obstacle avoidance

Flocking implementation Reynolds' flocking^[3]

- Dispersion rule substituted by Braitenberg
- Heading P controller

[3] Reynolds, "Flocks, herds and schools: A distributed behavioral model.", 1987

Flocking implementation Flockmate re-acquirement

- Controller keeps **leaky-memory** of the flock position
- 1. Flock loses one e-Puck:
 - General set of the set of the
 - ↓ Flock slows down
- 2. One e-Puck loses the flock:
 - e-Puck keeps memory of the last position of the flock:
 - Gereichter Gereich

Flock Behaviour P-Best **PSO**

Public, group, homogeneous

Hyper-parameters:

- Nparticles = $2 \times \text{Data Size} (2 \times 7)$
- Standard Neighborhood \circ # Neighbors = 3
- 5 Runs x 100 Iterations x 30s (simulated time)

Random particle position, velocity

Random obstacle positions

Results in simulation With perfect communication below 25cm

10 runs Mean: 0.278 Std: 0.021

10 runs **Mean**: 0.253 **Std**: 0.024

Obstacles (arena 1) **Crossing** (arena 2)

Impact of Simulated Noise

10 runs Mean: 0.192 Std: 0.021

10 runs Mean: 0.289 Std: 0.018

Odometry error (4%) Package drop above 25cm

Perfect odometry
Perfect communication

Porting to hardware

- Braitenberg

- P-controller on the heading

Porting to hardware

- "Flocking"

1 Million and 1 things to improve

- Start with the basics
 - Spend less time on hardware characterization
 - Spend more time on porting to hardware
- Investigate PSO issues
 - Poor hyper-parameter tuning or implementation issue?
 - Consider training obstacle avoidance using multi-robot heterogeneous PSO
- Consider more advanced control policies for group behaviour
 - Path following instead of heading control
 - Shared state information using unused R&B bandwidth (Kalman filter)
 - Inter-team communication for improved avoidance

Appendix A: Heading error

Appendix B: 13 epucks: No noise, 25cm communication

Appendix C: Crossing with package dropout and odometry noise

Appendix D:

- Trendline for series $1 R^2 = 0.998$

Distance2 [m2]

Appendix E:

2500 2000 Average Reading (500 measurements) 1500 1000 500 0 -500 0.01 0.02 0.04 0.06 0.08 0.1 0.2

Average IR Sensor Values

Appendix F: Packet drop-out implementation

• 100% success up to 10 cm

Linear degradation with distance

Appendix G:

ROTATION TEST			
e-Puck No.	Total Error	Error / Rotations	
99	10.15 deg	1.02 deg	
77	72.32 deg	7.23 deg	
56	114.66 deg	11.46 deg	
FORWARD MOTION TEST			
e-Puck No.	Total Error	Error / Distance	
99	4.5 mm	0.75%	
77	3.6 mm	0.60%	
56	4.1 mm	0.68%	